

PAPER OF THE MONTH • JANUARY 2026

April Rose, MD, CM, PhD

Principal Investigator, Lady Davis Institute for Medical Research
Assistant Professor, Department of Oncology, McGill University

Jennifer Maxwell

PhD student in Clinical and Translational Research, McGill University

Emmanuelle Rousselle

PhD student in Clinical and Translational Research, McGill University

Chantel Mukonoweshuro

PhD student in Clinical and Translational Research, McGill University

nature communications

Binimetinib and encorafenib for the treatment of advanced solid tumors with non-V600E BRAF mutations: results from the Phase II BEAVER trial

April A N Rose, Jennifer Maxwell, Emmanuelle Rousselle, Chantel L Mukonoweshuro, Islam E Elkholi, Melody Riaud, Marco Biondini, Erica Cianfarano, Isabel Soria-Bretones, Chantal Tobin, Meghan McGuire, Rhoda W Y Law, Andrew J Elia, Ben X Wang, Ian King, Tong Zhang, Trevor J Pugh, Zaid Saeed Kamil, Marcus Butler, Frances A Shepherd, Natasha B Leighl, Albiruni Abdul Razak, Aaron Hansen, Samuel D Saibil, Philippe L Bedard, Peter M Siegel, Lillian L Siu, David W Cescon, and Anna Spreafico.

Class 2 and 3 non-V600E BRAF mutations are oncogenic drivers in many cancer types. Currently, there are no established targeted therapies with proven efficacy for cancers with non-V600E BRAF mutations.

The BEAVER trial (NCT03839342) was an investigator-initiated, Phase II clinical trial designed to evaluate the efficacy of BRAF and MEK inhibitors in patients with non-V600E BRAF mutations. The primary outcome was objective response rate (ORR). The best ORR was 14% (3/21), the primary endpoint was not met.

By analyzing genomic data from patient tumors, circulating tumor DNA (ctDNA), patient-derived xenograft (PDX) models generated from enrolled patients, and Class 2 & 3 BRAF mutant cell lines, we discovered MAPK-dependent and independent mechanisms of resistance to BRAF/MEK inhibition. These mechanisms include the acquisition of new mutations in NRAS, MAP2K1, RAF1, and RB in ctDNA at the time of disease progression. CDK4/6 and SHP2 emerge as mediators of intrinsic resistance to BRAF/MEK inhibition in Class 2 & 3 BRAF mutant tumors.

Therapeutic strategies combining CDK4/6 or SHP2 inhibitors with BRAF/MEK inhibitors in preclinical models show greater efficacy than BRAF/MEK inhibitors alone in these cancers.

<https://www.nature.com/articles/s41467-025-68076-7>